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ABSTRACT 

Machine learning techniques for more efficient video compression and video 
enhancement have been developed thanks to breakthroughs in deep 
learning. The new techniques, considered as an advanced form of Artificial 
Intelligence (AI), bring previously unforeseen capabilities. However, they 
typically come in the form of resource-hungry black-boxes (overly complex 
with little transparency regarding the inner workings). Their application can 
therefore be unpredictable and generally unreliable for large-scale use (e.g. 
in live broadcast). The aim of this work is to understand and optimise learned 
models in video processing applications so systems that incorporate them 
can be used in a more trustworthy manner.  In this context, the presented 
work introduces principles for simplification of learned models targeting 
improved transparency in implementing machine learning for video 
production and distribution applications. These principles are demonstrated 
on video compression examples, showing how bitrate savings and reduced 
complexity can be achieved by simplifying relevant deep learning models. 

INTRODUCTION 

Machine Learning (ML) has demonstrated superior performance compared to traditional 
methods when applied to a variety of challenging computer vision and image processing 
tasks. Methods based on Convolutional Neural Networks (CNNs) have been particularly 
successful in solving image classification and object detection problems, as well as 
regression problems including image segmentation, super-resolution and restoration (1).  

When applied to visual data, CNNs identify patterns with global receptive fields that serve 
as powerful image descriptors. The deeper the network, the larger the receptive field, which 
in turn can lead to the network capturing more complex patterns from the input data. CNNs 
have set state-of-the-art results in large scale visual recognition challenges (2) and medical 
image analysis (3). The number of layers of CNN models that have set benchmarks in 
classification challenges, have been continually increasing, with the VGG19 model (4) 
containing 19 layers and ResNet (5) containing over 100. These deep architectures act as 
robust feature extractors and can be used as pre-trained models in related problems. The 
learned knowledge is applied to a different ML model, raising the accuracy of the related 
task at hand. For visual content enhancement, applied models such as automatic image 
colourisation (6), use a pre-trained VGG19 model for improving the perceptual quality of the 
outputs, while others like image super-resolution (7), base their architecture on previous 
Deep Neural Network (DNN) approaches.  



These developments have led to considerable research efforts focused on ways to integrate 
ML solutions into next generation video coding schemes. Tools based on both CNNs and 
DNNs with fully connected layers are increasingly being deployed in various newly proposed 
video compression approaches (8-14). 

The increasing demand for video distribution at better qualities and higher resolutions is 
constantly generating a need for even more efficient video compression. One of the biggest 
efforts in this field has been related to the development of the next-generation Versatile 
Video Coding (VVC) standard (15). VVC is a successor to the current state-of-the-art High 
Efficiency Video Coding (HEVC) standard (16) and aims at providing up to 50% reductions 
in bitrate for the same objective and subjective video quality. While investigating how to 
improve such video compression tools by using ML, it has become evident that the main 
drawback of the application of DNNs is the sheer complexity of their various forms. 
Moreover, DNN solutions shouldn’t be blindly applied to production and distribution 
applications. Their methods of manipulating input data need to be properly explained and 
understood, to mitigate potential unexpected outcomes. By making DNNs transparent, it 
gives an opportunity to build up trust with these methods as we can see what is happening 
in the network. 

To successfully design DNNs for practical applications, we are therefore researching how to 
address the complexity and transparency issues of DNNs. The approaches presented in this 
paper utilise specific forms of DNN interpretability which assist in the design of simplified ML 
video processing tools. As a result, the proposed methods present low complexity learned 
tools that retain the coding performance of non-interpreted ML techniques for video coding. 
Furthermore, the methods are transparent and allow instant verification of obtained outputs. 
With the demonstrated approaches, we have developed and confirmed principles that can 
serve as guidelines for future proposed ML implementations in video processing. 

The paper is structured as follows. In the next section, DNNs are examined, with details of 
their limitations for deployment in real-time applications. Afterwards, ML interpretability is 
introduced, with possible benefits for simplifying DNN solutions. A review of various ML 
proposals for video coding follows, along with a novel approach for efficient learned video 
processing tools based on ML interpretability. The approach is verified by demonstrating 
how several existing ML methods can be improved with the proposed enhancements. The 
conclusion summarizes the developed guidelines for a transparent application of ML in video 
coding. 

DEEP NEURAL NETWORKS 

DNN architectures typically lead to higher accuracy results for a given task than shallow 
networks, as seen with large-scale visual recognition challenges (2,4,5). However, 
researchers have noted that many trained DNNs can be too slow and too large for real-time 
deployment (17). They advocated a need for fast, compact yet highly accurate models and 
presented an approach for model compression. The main approach was to use the compact 
model to approximate the function learned by a slower, larger, but better performing model. 
While this approach results in only a slight loss in performance, it does not address the 
transparency issues of learned ML models.  

Furthermore, DNN implementations utilizing pre-trained models often have several million 
parameters. This raises concerns regarding the environmental cost of exponentially scaling 
these models, while also hampering their adoption rate by having high computational and 
memory requirements when deployed in applications. Estimates suggest that model training 
and development likely makes up a major portion of greenhouse gas emissions attributed to 
many ML researchers, often requiring weeks or months of continuous training on resource-
hungry processors (18). The financial costs of these computations can also make it difficult 



for academics and students to engage in ML research. Such observations lead to 
recommendations for a concerted effort by industry and academia to promote research into 
more computationally efficient algorithms. In addition, proposals have been made for adding 
efficiency of training and of execution as an evaluation criterion for research alongside 
accuracy and related measures (19). Despite the clear benefits of improving model 
accuracy, focusing on a single metric, accuracy of the model’s outputs, ignores the economic 
and environmental cost of reaching the reported accuracy. 

A study performed on the large visual databases used to train deep classification networks 
discovered how bias is deeply embedded in most classification approaches for all sorts of 
images (20). This study prompted many to express concern and distrust towards 
implementing neural networks within everyday applications. Therefore, it has become very 
important to explore understanding of neural networks and their learned outputs to rebuild 
trust. Interpretability, discussed next, is a field which aims to address this. 

MACHINE LEARNING INTERPRETABILITY 

Interpretability is an area of ML research that aims to explain how the results of learned ML 
algorithms are derived, in a clear and plain manner. Neural network models are commonly 
used as black boxes, in the sense that it is typically not known how trained algorithms make 
decisions to arrive at their outputs based on input data. Furthermore, the intricacy of 
architectures such as CNNs makes them challenging to understand, putting the 
trustworthiness of their deployment into question. By interpreting neural networks, it is 
possible to uncover the black box, providing explanations to support a transparent and 
reliable use of ML. Additionally, this process can also lead to uncovering redundancies in 
the structure of an analysed model. Understanding the relationships learned by a neural 
network enables the derivation of streamlined, less complex algorithms that can be applied 
in systems which require low-complexity solutions and/or do not have enough training data 
(21, 22). 

Previous work showed how interpretability can be used for detecting biases within trained 
neural network models, in order to be able to avoid deployment of such faulty models. An 
explanation technique for image classifiers was proposed, demonstrating how ML classifiers 
can produce undesirable correlations if trained on biased data (23). For example, if a 
classifier has a task of distinguishing between wolves and huskies, a network can be trained 
on images where all pictures of wolves have snow in the background, while pictures of 
huskies do not. Therefore, the trained network will always predict wolf if there is snow in the 
image and husky otherwise, regardless of the relevant discernible features such as animal 
colour or pose. Their technique produced saliency maps, which highlighted important 
features within an image that the network has identified, in this particular case the snow. 

Interpretability can also be achieved using post-hoc methods, by analysing the DNN models 
after training, providing valuable insights into the learned relationships between inputs and 
outputs (24). Post-hoc analysis captures how much individual features contribute to a 
prediction. Trained weights of a NN model contain all the parameters needed for performing 
a series of operations on the input data through each layer of the network. It is very valuable 
to investigate whether this immense set of parameters can be reduced while retaining the 
accuracy of the model. This also allows for the understanding of these models, leading to 
opening up the black box of DNNs and towards their transparent application. 

In this paper we focus on techniques that remove certain elements of DNNs that do not 
affect overall performance, in order to make them more interpretable. The goal is to 
drastically simplify the application of these learned models while also enabling their 
transparency. The proposed techniques are verified in the domain of video coding, a 
research field particularly sensitive to computationally expensive algorithms. 



MACHINE LEARNING IN VIDEO CODING 

Ground-breaking results brought by the usage of ML in visual data tasks have inspired ML 
applications for video compression. In the last few years, DNN approaches have 
demonstrated how they can make video compression perform better in terms of bit-rate 
reduction (8). Traditional tools for predictive coding, filtering or entropy coding can be made 
more effective when combined with DNN designs (12-14). On the other hand, end-to-end 
video compression frameworks based on ML outperform the widely used standards, such 
as H.264 (25). However, such solutions bring coding gains at the cost of substantial 
increases in complexity and memory consumption. For now, the high complexity of these 
schemes, especially on the decoder side, limits their potential for implementation within 
practical applications. 

For example, in (12) a proposed attention-based CNN model (aimed at improving the in-
loop filtering within VVC) on average achieves bit-rate savings of more than 6% compared 
to the baseline VVC. When run on a processor, this solution results in over 400 times larger 
complexity on the decoder side, impairing its possible inclusion in the standard. A few 
schemes based on highly simplified DNN models have been adopted into the latest VVC 
drafts, notably Matrix weighted Intra-Prediction (MIP) modes (10) and Low-Frequency Non-
Separable Transform (LFNST) (11). In general, although DNNs have shown to bring coding 
improvements to certain stages of the video compression process, the majority of proposals 
are still too complex, i.e. too slow for wide-spread adoption. 

We have previously proposed complexity reduction techniques for video coding based on 
learned models (26). In this paper, we concentrate on addressing the efficiency of promising 
tools which bring considerable coding benefits when implemented within the VVC standard. 
The improvements in efficiency are achieved by adopting an approach based on ML 
interpretability. The initial contributions are outlined in (13, 14, 27), and further defined in the 
following section detailing our approach. 

SIMPLIFYING LEARNED TOOLS APPLIED IN VIDEO CODING 

The predictive coding unit within a video codec removes a video’s redundancy in the spatial 
(intra-prediction) and temporal (inter-prediction) domain. Many ML solutions have been 
proposed with the goal of improving these tools. These solutions usually utilise fully 
connected or convolutional layers as its building blocks. Fully connected layers connect all 
neurons of the previous layer to the next one. This requires an overwhelming number of 
parameters which can lead to very slow processing, as these parameters are often needed 
to be accessed thousands of times per second for a single video coding tool during decoding. 
Convolutional layers are more efficient, analysing features and patterns in visual data by 
passing a filter over an image, scanning a few pixels at a time. 

To achieve impressive performance, NNs require multiple layers to learn abstract 
relationships within the data. Many of these layers are followed by an activation function that 
adds a non-linear property to the NN, adding up to a high number of parameters, whether 
they are CNNs or Fully Connected Networks (FCNs). 

By using ML interpretability, we have developed an approach that simplifies these networks, 
reducing their large number of parameters, but retaining their accuracy. We have applied 
our approach on three existing ML solutions for video coding:  

• Simplification of fully connected layers with application in intra-prediction 

• Simplification of convolutional layers with application in inter-prediction 

• Branch simplification of complex networks with application in chroma prediction 



The methods were verified with the Bjøntegaard delta-rate (BD-rate), a common objective 
evaluation metric used by video coding researchers (28). Negative BD-rate values represent 
compression gains, while positive values correspond to compression losses. The BD-rate 
was computed for a set of video sequences across different resolutions, referred to as 
classes (29). 

Simplification of fully connected layers with application in intra-prediction 

Intra-prediction reduces spatial redundancies within a frame since adjacent pixels are 
typically similar. Thus, the content of a given block can be predicted from pixels of its 
neighbouring blocks. 

Conventional intra-prediction modes 
produce blocks where the predictions are 
generated from the surrounding samples 
in a deterministic manner, resulting in even 
and slow-changing content. ML-generated 
modes, like MIP modes (10), can produce 
content that describes more complex 
textures. An FCN model for intra-
prediction (illustrated in Figure 1 (a) was 
proposed in (27). As the number of 
parameters of a learned model is high and 
difficult to interpret, we devised simpler 
models that are easier to explain. By 
removing all activation functions and re-
training the obtained network architecture, 
the multi-layer model can be interpreted as 
a single layer model after training, as seen 
in Figure 1 (b) and detailed in (30).  

Figure 2 shows the depth of both the multi-
layer model and the interpreted model. As 
it’s an FCN, the number of parameters for 
each layer depends on the size of the final 
predicted square block.  The number of 
reference lines, D, is set to 4. Although our 
network contains four layers, since it’s a 
linear model with no activation functions, it 
allows for the derivation of the prediction 
directly from the input. Therefore, it is 
possible to clearly identify how each 
reference pixel is used to compute each 
pixel in a prediction block, as illustrated in 
Figure 3 for a 4×4 block. 

Both approaches were evaluated in VVC 
Test Model (VTM) 1.0 using all intra 
configuration, limited to square blocks up 
to size 16×16. The results show that the 
simplified model leads to a significantly 
lower number of parameters, as defined in 
Table 1. Table 2 shows the coding 
performance of the proposed approach, 
achieving up to 1.95% bit-rate savings for  

 

 

(a) Baseline FCN 
 

 

(b) Simplified fully connected model 
 

Figure 1 – FCN simplification process 
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Figure 2 - Intra-prediction models. 
 



the luma channel compared to the constrained 
VTM, while reducing the complexity of learned 
FCN intra-prediction by 15% on average (30). 

Further simplifications to the approach can be 
made. The number of reference samples can be 
reduced as many of them are not used when 
predicting a pixel (Figure 3).  

In general, we have shown that simple ML 
methods can be derived from complex ones and 
that the prediction capabilities are similar given 
that almost identical bit-rate savings were 
obtained compared to the original model based 
on FCNs. After demonstrating the effectiveness 
of interpretability on FCNs, we proceeded to 
apply our approach on CNN architectures. 

 

Network Parameters 

Baseline 92544 

Ours 42751 
 

Class Luma 

B -0.84% 

C -1.46% 

D -1.71% 

E -1.95% 
 

 
Table 1 - Number of parameters for different 

FCN structures. 

 
Table 2 - Coding performance of the 

simplified FCN model. 
 

Simplification of convolutional layers with application in inter-prediction 

Inter-prediction obtains a prediction of a block in a current input frame, by utilising a block-
matching algorithm to find the pixel-wise closest reference block in a previously encoded 
frame. Once the best match has been found, the prediction samples from the reference 
block are subtracted from the original samples. The prediction can be further refined using 
interpolation filtering to provide a more accurate prediction, known as sub-pixel (fractional) 
interpolation.  

Modern video coding solutions use fixed N-tap filters applied horizontally and vertically to 
produce fractional samples. However, these fixed filters may not describe the original 
content well enough or capture the diversity within the video data. Using Super-Resolution 
CNNs (SRCNNs) to generate new interpolation filters for HEVC was proposed in (13). The 
method has high complexity requirements, resulting in an almost 50 times higher decoder 
run-time compared to the HEVC anchor. 

In order to see if similar compression benefits can be achieved by using a less complex 
implementation, we introduced an approach focused on complexity reduction of CNNs, by 
interpreting the results learned by the networks (31). In the proposed approach, the SRCNN 
is adapted by removing non-linear activations (Figure 4), which did not impact the learning 
and compression performance. 

 

 

 
 

Figure 3 - Contribution of reference 
pixels to generate a prediction block. 

 
 
 



 

(a) Baseline SRCNN 

 

(b) Simplified convolutional model 
 

Figure 4 – CNN simplification process 

 

 
 

(a) Baseline          (b) Simplification 
 

Figure 5 - Inter-prediction models. 

As illustrated in Figure 5, each CNN layer extracts features from the previous one with a 
receptive field until it arrives at the pixel prediction. As it’s a CNN, the size of the filters is 
consistent regardless of the final predicted block size. The first layer uses 64 9×9 filters, the 
second 32 1×1 filters and the last one 32 5×5 filters. Due to the obtained network 
architecture, once a trained model is available we can devise a method to directly compute 
samples of the resulting image from the input, instead of performing numerous convolutions 
defined by CNN layers.  

It is possible to identify the contribution of each reference pixel for a specific filter, as 
illustrated in Figure 6. New interpolation filters have been learned, 15 in total to account for 
all possible quarter sub-pixel positions. 

The simplification fully describes how the network behaves and presents a substantial 
decrease in the number of parameters compared to the original, non-interpreted model, as 
outlined in Table 3. This technique performs significantly quicker than previous CNN-based 
efforts when tested within VVC. Experiments have revealed an 82% decrease in the decoder 
runtime compared to the initial SRCNN approach (31).

 

 

Table 4 summarises test results for a 
switchable filter implementation (choice 
between traditional and learned filters) of 
our approach within VVC constrained 
conditions. Since the previous method was 
implemented in HEVC, the encoding 
configuration was restricted to resemble 
HEVC conditions for inter-prediction. When 
compared with the modified VVC, the 
proposed approach achieves up to 1.1% bit-
rate savings in the luma channel for the 
random access configuration. Additional  

 
Figure 6 –15 derived filters, one 
for each quarter-pixel position 

around a sample 



simplifications of the approach can be made by even further reducing the number of 
parameters. The derived interpolation filters do not utilise all parameters with equal 
importance (Figure 6), so some could be removed by quantisation. 

After proving that interpretability can lead to less complex NN models while retaining their 
accuracy, we conducted supplementary research in the area of chroma prediction. We 
considered more intricate architectures, with a high number of layers, investigating the trade-
off between coding performance and memory consumption. 

 

 

Branch simplification of complex networks with application in chroma prediction 

Colour prediction has proven to be effective in achieving better compression rates by 
exploiting the cross-component redundancies between luma and chroma. The Cross-
Component Linear Model (CCLM) was introduced in HEVC (32), as an efficient way of 
predicting chroma information within an intra-prediction block from already reconstructed 
luma samples in its close surroundings. Nonetheless, the effectiveness of simple linear 
predictions can be limiting, and improved performance can be achieved using more 
sophisticated ML mechanisms. A novel hybrid neural network for chroma intra-prediction 
was proposed in (14). A CNN for extracting spatial patterns from luma samples was 
combined with a Fully-Connected Network (FCN) used to extract cross-component 
correlations between neighbouring luma and chroma samples.  

Such techniques improved existing chroma prediction technologies, but increased the 
system complexity and the amount of operations needed for solving the task. For instance, 
the aforementioned hybrid architecture required over a hundred thousand operations 
(including additions and matrix multiplications) for predicting a single block containing 64 
pixels. Furthermore, a separate model had to be trained for each possible square block size. 

In (33), we introduced a simplified cross-
component intra-prediction hybrid model, 
using interpretability to exploit redundant 
parameters with the aim of reaching a cost-
effective implementation. The proposed 
architecture introduces a joint model for block 
sizes of 4, 8 and 16 pixels. It also includes an 
attention mechanism to control the 
contribution of each neighbouring reference 
sample when computing the prediction of each 
chroma pixel in the current sample location, 
resulting in more accurate prediction samples. 
The model complexity is measured by 
counting the number of parameters. As 
illustrated in Figure 7, the complexity of utilised 
convolutional filters can be reduced by 
removing non-linearities and obtaining a 
unique filter by combining convolutional layers. 

Class Luma 

C -0.65% 

D -1.08% 

Table 4 - Coding performance of the 
simplified CNN model 

Network Parameters 

Baseline 8129 

Ours 169 

Table 3 – Number of parameters for 
different CNN structures 

Figure 7 – Chroma intra-prediction model 
and simplification process. 

 



The derivation process can be seen in Figure 
8. Zero padding is applied to convert the 
input size to (𝑁 + 4) × (𝑁 + 4) pixels. In 
parallel, the fully-connected branch encodes 
the colours on the boundary input and 
transfers them to the unknown block 
locations. Each boundary input is 
transformed into a feature vector of 32 
dimensions. An autoencoder is used to 
reduce the branch complexity by squeezing 
the 32-dimensional feature space into one of 
3 dimensions. Autoencoders learn a 
representation for a set of data, typically in 
reduced dimensionality, with a trained 
decoder that recovers the original space. As 
a result, the coded colours can be obtained 
using the encoder’s part of the autoencoder, 
hence achieving a reduced complexity. 
Finally, a fully connected layer is applied to 
map the output of the attention module to the 
predicted chroma channels.  

Table 5 shows a complexity comparison of different architectures for an 8×8 block size. The 
applied simplifications considerably reduced the system complexity at the price of a minimal 
performance drop (33). Table 6 summarises coding performance results of chroma channels 
for a constrained test in VTM 7.0 with square blocks of 4, 8 and 16 pixels. Experiments have 
revealed 51% decrease of the decoder runtime on average compared to the baseline 
approach in (33). 

Network Parameters 

Baseline 94116 

Ours 3472 
 

Class Chroma 

U V 

B -1.47% -1.41% 

C -1.04% -1.29% 

D -1.13% -1.64% 

E -0.95% -1.02% 
 

 
Table 5 – Number of parameters for different 

hybrid network structures. 

 
Table 6 - Coding performance of the 

simplified hybrid model. 

DISCUSSION 

Through research on the next generation video coding standard, we have validated how 
existing ML approaches in video coding can be enhanced by using interpretability. We 
demonstrated three examples that show how certain layers of DNNs can be simplified 
without a major sacrifice of performance.  

In the example of FCN-based intra-prediction, we simplified a network with fully connected 
layers. By removing the non-linear activation functions, the solution obtained results in a 
much more compact representation that achieves a sensible trade-off between complexity 
and coding performance. In the case of CNN-based inter-prediction, we simplified the CNN 
by also removing activation functions. In addition to previous observations, this approach 
also enables us to consistently understand how the network processes the input data. In the 
final example (CNN-based chroma prediction), we established how particular branches of a 
more complex network can also be simplified without affecting the overall performance. 

       (a) Baseline               (b) Simplification 

Figure 8 – Convolutional branch of the 
chroma intra-prediction model 

 

 

 



Although a full simplification may not be attainable, efficiency improvements can be made 
by understanding the intricate structure of a very deep network. 

During this process, we have introduced guidelines towards transparency in applying ML 
models in video processing. The most important aspect of implementing learned models in 
production and distribution is understanding how they actually obtain their results. By 
interpreting these models, we can devise approaches that simplify the methods and also 
verify their outputs, promoting development of efficient, transparent models with low memory 
consumption. 

CONCLUSION 

ML algorithms have been increasingly successful in tackling challenging image and video 
processing tasks. Advancements in technology have allowed for the development of deeper 
and more complex NN architectures that have led to impressive benchmarks in computer 
vision. However, their complexity has, at times, also impeded their wide-spread adoption in 
practical applications. Additionally, ML methods need to be properly explained and 
understood, especially when applied to production and distribution applications. 

Video coding is a research field sensitive to computationally expensive algorithms. Many ML 
approaches achieve high bitrate savings, but are rarely implemented on resource-limited 
devices due to their complexity and memory consumption. Our work on interpretable ML 
examines how the models that underpin these advanced technologies work. We optimise 
and understand them, in order to leverage that knowledge to improve traditional video coding 
tools by combining them with DNN designs.  

In this paper, we’ve proven that ML approaches for video coding can be made more efficient 
by interpreting and thus understanding their learned models. More importantly, the proposed 
methods can serve as guidelines for subsequent implementations of ML models in real-time 
production and distribution workflows. 

REFERENCES 

1. Guo, Y., Liu, Y., Oerlemans, A., Lao, S.-Y., Wu, S. and Lew, M. 2016. Deep learning for 
visual understanding: A review. Neurocomputing, vol. 187. April, 2016. pp. 27 to 48. 

2. Hu, J., Shen, L., Albanie, S., Sun, G. and Wu, E. 2019. Squeeze-and-Excitation Networks. 
IEEE Trans. Pattern Anal. Mach. Intell. 

3. Lu, L., Zheng, Y., Carneiro, G. and Yang, L. 2017. Deep Learning and Convolutional 
Neural Networks for Medical Image Computing: Precision Medicine, High Performance and 
Large-Scale Datasets. Springer Publishing Company, Inc. 

4. Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv 1409.1556. September, 2014. 

5. He, K., Zhang, X., Ren, S. and Sun, J. 2016. Deep Residual Learning for Image 
Recognition. IEEE Comput Soc Conf Comput Vis Pattern Recognit. Las Vegas, NV. pp. 770 
to 778. 

6. Gorriz Blanch, M., Mrak, M., Smeaton, A. F. and O’Connor, N. E. 2019. End-to-End 
Conditional GAN-based Architectures for Image Colourisation. 2019 IEEE MMSP. Kuala 
Lumpur, Malaysia. 

7. Toutounchi, F. and Izquierdo, E. 2018. Enhancing Digital Zoom in Mobile Phone 
Cameras by Low Complexity Super-Resolution. 2018 IEEE ICMEW. San Diego, CA. July, 
2018. 

8. Liu, D., Li, Y., Lin, J., Li, H. and Wu, F. 2020. Deep Learning-Based Video Coding: A 



Review and a Case Study. ACM Comput. Surv. vol. 53, no. 1, art. 11. February, 2020. 35 
pages. 

9. Santamaria, M., Izquierdo, E., Blasi, S. and Mrak, M. 2018. Estimation of Rate Control 
Parameters for Video Coding Using CNN. 2018 IEEE VCIP. Taichung, Taiwan. 

10. Helle, P., Pfaff, J., Schafer, M., Rischke, R., Schwarz, H., Marpe, D., Wiegand, T. 2019. 
Intra Picture Prediction for Video Coding with Neural Networks. 2019 DCC. Snowbird, UT. 
March 2019. pp. 448 to 457. 

11. Koo, M., Salehifar, M., Lim, J. and Kim, S. Reduced Secondary Transform. JVET-N0193, 
14th JVET Meeting, Geneva, Switzerland. March, 2019. 

12. Wang, M., Wan, S., Gong, H. and Ma, M. 2019. Attention-Based Dual-Scale CNN In-
Loop Filter for Versatile Video Coding. IEEE Access. vol. 7. September, 2019. pp. 145214 
to 145226.  

13. Yan, N., Liu, D., Li, H., Li, B., Li, L. and Wu, F. 2019. Convolutional Neural Network-
Based Fractional-Pixel Motion Compensation. IEEE Trans Circuits Syst Video Technol. vol. 
29, no. 3. March, 2019. pp. 840 to 853. 

14. Li, Y., Li, L., Li, Z., Yang, J., Xu, N., Liu, D., and Li, H. 2018. A hybrid neural network for 
chroma intra prediction. 2018 IEEE ICIP. October, 2018. pp. 1797 to 1801. 

15. Bross, B., Chen, J., Liu, S. and Wang, J. K. Versatile Video Coding (Draft 9). JVET-
R2001, 18th JVET Meeting, Teleconference. April, 2020. 

16. Sullivan G. J., Ohm J.-R., Han W.-J. and Wiegand T., 2012. Overview of the High 
Efficiency Video Coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. vol. 
22, no. 12. pp. 1649 to 1668. 

17. Buciluǎ, C., Caruana, R. and Niculescu-Mizil, A. 2006. Model compression. Proc. 12th 
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. August, 2006. pp. 535 to 541. 

18. Strubell, E., Ganesh, and McCallum, A. 2019. Energy and Policy Considerations for 
Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for 
Computational Linguistics. Florence, Italy. July, 2019. 

19. Schwartz, R., Dodge, J., Smith, N. A. and Etzioni, O. 2019. Green AI. 
arXiv:1907.105972019. 

20. Crawford, K. and Paglen, T. Excavating AI: The Politics of Images in Machine Learning 
Training Sets. Available at: https://www.excavating.ai/ 

21. Mrak, M. 2019. AI Gets Creative. Proc. 1st Int. Workshop on AI for Smart TV Content 
Production, Access and Delivery (AI4TV ’19 @ ACM Multimedia). October, 2019. 

22. Mrak, M., Magli, E. and Dufaux, F. 2019. Spotlight on the Multimedia Signal Processing 
Technical Committee [In the Spotlight]. IEEE Signal Process. Mag. vol. 36, no. 3. May, 2019. 
pp. 126 to 128. 

23. Ribeiro, M. T., Singh, S. and Guestrin, C. 2016. “Why Should I Trust You?”: Explaining 
the Predictions of Any Classifier. Proc. 22th ACM SIGKDD Int. Conf. Knowl. Discov. Data 
Min. pp. 1135 to 1144. 

24. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu. B. 2019. Definitions, 
methods, and applications in interpretable machine learning. Proc Natl Acad Sci USA. 
October, 2019. pp. 22017 to 22080. 

25. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C. and Gao, Z. 2019. DVC: An End-To-End 
Deep Video Compression Framework. IEEE Comput Soc Conf Comput Vis Pattern 
Recognit. Long Beach, CA. pp. 10998 to 11007. 

https://www.excavating.ai/


26. Westland, N., Seixas Dias, A. and Mrak, M. 2019. Decision Trees for Complexity 
Reduction in Video Compression. 2019 IEEE ICIP. September, 2019. 

27. Pfaff, J., Helle, P., Maniry, D., Kaltenstadler, S., Samek, W., Schwarz, H., Marpe, D., 
Wiegand, T. 2018. Neural network based intra prediction for video coding. Proc. SPIE, vol. 
10752. Applications of Digital Image Processing. September, 2018. 

28. Bjøntegaard G., 2001. Calculation of average PSNR differences between RD-curves. 
VCEG-M33, 13th VCEG meeting. Austin, TX. April 2001. 

29. Bossen, F., Boyce, J., Li, X., Seregin, V. and Suehring, K. 2019. JVET common test 
conditions and software reference configurations for SDR video. JVET-N1010, 14th JVET 
Meeting, Geneva, Switzerland. March, 2019. 

30. Santamaria, M., Blasi, S., Izquierdo, E. and Mrak, M. Analytic simplification of neural 
network based intra-prediction modes for video compression. To appear in 2020 IEEE ICME. 
July, 2020. 

31. Murn, L., Blasi, S., Smeaton, A. F., O’Connor, N. E. and Mrak, M. Interpreting CNN for 
low complexity learned sub-pixel motion compensation in video coding. To appear in 2020 
IEEE ICIP. October, 2020. 

32. Kim, W. S., Pu, W., Khairat, A., Siekmann, M., Sole, J., Chen, J., and Marpe, D. 2015. 
Cross-component prediction in HEVC. IEEE Trans Circuits Syst Video Technol. 

33. Gorriz Blanch, M., Blasi, S., Smeaton, A. F., O’Connor, N. E. and Mrak, M. Chroma Intra 
Prediction with attention-based CNN architectures. To appear in 2020 IEEE ICIP. October, 
2020. 

ACKNOWLEDGEMENTS 

The work described in this paper has been conducted within the project JOLT funded by the 
European Union’s Horizon 2020 research and innovation programme under the Marie 
Skłodowska-Curie grant agreement No 765140, and within an iCASE grant funded by the 
Engineering and Physical Sciences Research Council of the UK. 


